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The heat wransfer at an impermeable plate has been experimentally For the zero-gradient flow of an incompressible

investigated under various boundary conditions. The conservativeness fluid with constant physical parameters at constant
= & ¥y H
of the heat transfer law St; f(ReT) is demonstrated for a monotonic wall temperature we have

increase of temperature and heat flux along the surface.

St= —f‘n— . (2)
The question of the effect of boundary conditions on - Rer Prt
the development of a thermal turbulent boundary layer We assume that this heat transfer law is conser-
has attracted the attention of numerous investigators vative with respect to longitudinal variations of heat
[1-5]. flux and wall temperature. Then the solution of Eq.
The method of calculating heat transfer and friction (1) for a given distribution AT = f(x) along the wall
first proposed in [6,7] has recently been widely adopted. is the integral
This method is based on the idea that in integrating o
the boundary layer equations in the case of an arbi- Rey = 1 [ (1+md Re, | ATH™d5 -+ c] Lm 3)
trary distribution of the wall-flow temperature dif- A Prn
ference, and also a longitudinal pressure gradient,
on a certain interval of the bounding conditions it is and, correspondingly, for a given law of heat load
possible to use the laws of friction and heat transfer distribution q,, = f(x)
obtained for an isothermal flow over a flat plate. It is .
used for calculating the turbulent layer on permeable » A 1 _ E—
surfaces and can be extended to other complex hound- Rer = [ P Re; e (fq,dx +C)] ) (4)
ary conditions [8-10]. ¥
The energy equation for plane flow can be written where c is a constant of integration determined from
in the form [10] the boundary conditions.
B o Knowing Re"r‘f-|< from (3) and (4), we can use Eq. (2)
deT _Rer dA_ = StRe;, (1) to calculate the heat transfer-in a given section. In
dx AT dx order to check the conservativeness of the heat trans-
fer law with respect to changes in the boundary con-
where ps : X
ditions, we performed the special experiments de-
- o Wo 87 scribed below.
Rer :Lﬁz—’ AT =Tw—To; These experiments were conducted in an open-
circuit wind tunnel with a maximum velocity of up
Re, = Lpowy . X= j‘_’ St—_° . to 50 m/sec in the rectangular (120 X 120) working
i L Yo @oCp, section (Fig. 1).

Fig. 1. Schematic view of working section: 1) Prandtl tube;
2) flexible strip; 3) calorimeters; 4) ejector for sucking off
boundary layer; 5) flexible-strip regulating screws.
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A convergent section (contraction 4:1) ensured a
sufficiently uniform velocity profile at the inlet to
the working section.

An electrically heated sectional plate-calorimeter
600 mm long was installed in the top of the working
section, facing an elastic steel strip used to keep the
velocity constant along the length of the channel. This
was achieved by varying the channel cross section to
compensate for the growth of the boundary layer.

The experimental plate consisted of 12 individual
sections, each with a 0.1-mm stainless (1Cr18Ni9Ti)
foil plate heater bonded to an asbestos-cement base.
On top was a brass plate measuring 50 X 70 x 3 insu-
lated from the heater by a thin sheet of mica. This
plate had two deep notches parallel to the channel
axis. Thus, the experimental plate was guarded, as
it were, by protective heaters, which considerably
reduced possible heat losses to the side walls of the
channel. The inside face of the brass plate carried
0.2-mm thermocouples in glass-fiber insulation. To
improve the thermal contact between the brass plate
and the heater, tension was applied to the entire sec-
tion by means of six 2-mm bolts. All 12 sections were
assembled on a common frame with a sharp leading
edge 30 mm long. The boundary layer that developed
on the wall of the working section in front of this edge
was sucked off by an ejector. The optimal suction was
determined as follows., A 0.1-mm nichrome wire was
introduced parallel to the edge and 10 mm away up-
stream. The wire was electrically heated, as a result
of which a thin layer of heated air was formed down-
stream behind it; this was clearly visible through the
windows in the sides of the channel in an IAB-451 shadow
instrument.

At the optimum suction the wake was parallel to
the heat transfer surface. At the same time, we mea-
sured the velocity field by means of a Prandtl tube in
the section of the working chamber corresponding to
the edge of the ejector orifice. These measurements
showed that at the optimum suction the thickness of
the boundary layer at the beginning of the orifice was
practically equal to zero.

The heat losses of all the sections were determined
in calibration experiments with the cavity of the work-
ing chamber filled with thermal insulation at T, =
= const and in the presence of a temperature drop
between neighboring sections. These losses did not
exceed 10—~15% of the total heat extracted from the
plate.

The experimental data were correlated by the rela-
tion

Sty = f (Per),
St Iw

Sto _ —, St = »

Yo @oCp, (Tw — Th)
T )‘0 5 o w, 6**
TP B . GeOr
L ( To N Per 2
where
15 q,dx
87 = 5)

Yo @oCpo (Tw—To)
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Fig. 2. Variation of wall temperature for various

boundary conditions: 1) AT = const; 2) qy = const;

3) AT =b + dyX; 4) qy = qpexpkx; 5) AT = b — dox;
6) 9, = do sin7X;tin °C, x in mm.
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Fig. 3. Experimental data correlated as St; = f(Pei%*):
1) A=1;2) A=2; 3) AT = const; 4) AT = b + dyx; 5)
Qw = do expkx; 6) gy = const; 7) AT =b — dgX; 8) gy =
= qq sin TX.

Expression (5) follows directly from the energy equa-
tion (1). The first series of experiments was carried
out with the boundary conditions: AT = const; qy, =
= const; AT =b + dgX (dg > 0); gw = q exp kX, with
the wall temperature and the heat flux increasing
monotonically along the length of the plate (Fig. 2).
As may be seen from curve 1 of Fig. 3, irrespec-
tive of the form of the boundary conditions the experi-
mental points are grouped around the curve
R o
Per Pros
Relation (6) was previously obtained in [10] on the
basis of [11] for the condition AT = const.
In Fig. 4 the same experimental data are correlated
in the form

Sty =

St =7 (Re,), ()
where
Re, — 0@t
Lo

and x is the length reckoned from the beginning of the
turbulent boundary layer, which in our experiments
almost coincided with the beginning of the plate. As
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Fig. 4. Experimental data correlated as Sty = f(Rey):
1) Eq. (8); 2) (10); 3) (14); 4) (12); 5) AT = const; 6)
AT =b + dgx; 7) Uy = do expkX; 8) qy, = const,

may be seen from Fig. 4, the experimental points
are distinctly stratified according to the experimental
regime. Using Eqs. (1) and (6) we can find relations
(7) for each of these boundary conditions.

For AT = const we have

0.0288
Re2? pro6

Sty = (8)

For AT =b+ d¢x, m = 0.25, n=0.75

o 0.8
Rey — 0.0362 Re;,

Pro 6
fof @orbps—pe P01 g
2.95d, dox + b
Ifb=0,
o 0.0188 Re%®
Rer = ——p55—
and, moreover,
0.0338
Sty = —— (10)
° Re) ? Pro-6
For
q,, = const
Rer = St, Re,, (11)
0.0302
= T YITE 12
St, R T pros (12)
For
g, = qoexp kx
Re;-*:StoReLJ— expkx—j 1 , (13)
k exp kx
0.2 - 0.2
Sty = O'OSO?Q(kxg - ( ex}ikx ) ‘ (14)
Re, “Pr’" expkr —1

Relations (8), (10), (12), (14), denoted by 1, 2, 3, and
4, respectively, in Fig. 4, are in satisfactory agree-
ment with the experimental data.

The second series of experiments was performed
for AT =b — dgx, qg = qy sin7x (Fig. 2).

These data are represented by curve 2 in Fig. 3.
Clearly, the agreement with relation (6) is less satis-
factory than for the first series of experiments.

The results obtained are consistent with the con-
clusions of [6,7], where it is shown that on a certain
interval of variation of the gradient dAT/dx its effect
on St can be neglected. According to [6,7], the rela-
tive error in determining St when the effect of the
boundary conditions is neglected satisfies an inequality
that can be written in the form

ASt

Rer  dAT
St,

StRe, AT g%
For the boundary conditions g, = gy exp KX and

the corresponding AT = cexpkx we obtain, using (6),
(13)-(15),

ASt<O’1 expkxtl ’
Sty exp kx
ASt
<0.1,
Sty
or
Rer dAT

Re Sty A Tdx

since k > 0, 0 < X < 1. A similar result is observed
for AT =b + dgx. Using (6), (9), we find that

Rer  dAT 20.55[1__( b )“5] (e
StyRet AT dx dox b

Since

—f’——\(, 1, we have A St
dox b Sty

< 0.055.

However, the error in determining St from (6)
increases if the boundary conditions correspond to a
decrease in the wall temperature or heat flux along
the surface. In fact, for the case AT =b — dyx, by
analogy with (16), we obtain

o 2.95
_Rer dAT _ss[( b V¥ __].
StyRe, AT dx b—dyx

Since

ASt

(]

> 0.055.

b
——— | > 1, we have
( b—dyx )/ we hav

Thus, we may consider it established that the heat
transfer law St = f(Per’f*) is practically independent
of the boundary conditions AT = f(x), qy =f(x), if
AT and gy, increase along the surface.

At the same time, the effect of the boundary con-
ditions may be appreciable if AT and gy, decrease
downstream. Final quantitative conclusions can be
reached only after additional research. It should be
noted that there is some correspondence between the
results obtained and the known fact that the friction
law Cgr, =f(Re**) is affected by the longitudinal pres-
sure gradient, the form parameter of the thermal
boundary layer

Rer dAT
Re. St, A Tdx




being analogous to that of the dynamic boundary layer

9Re*™* 1 du,
Cfu ReL Wy d; '

NOTATION

6? is the energy thickness; wy, py, and T are the
velocity, density, and temperature at the outer edge
of the boundary layer; iy, a, ¢, are the dynamic
viscosity, thermal diffusivity, and specific heat at
the temperature Ty; L is the scale length; Ty, is the
wall temperature; qy is the heat flux at the wall; ¥
is the relative Stanton number; Pr is the Prandtl num-
ber ; St; is the Stanton number under standard con-
ditions; Cr is the coefficient of friction; Re** is the
Reynolds number based on the momentum thickness;
dg, b, k, and q; are constants.
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